
ON THE STABILITY OF A PULSATING PLASMA CYLINDER 

(Received June 15, 1965) 

The present paper concerns the stability of an ideally conductive cylindrl- 
tally symmetric plasma confined by a time-variable magnetic field. !Che 
example of a compressible homogeneous cylinder Is used to consider instabi- 
lity analogous to that of a heavy fluid supported againat gravity by a lighter 
medium. The conditions under which nonradial oscillationa are excited, are 
analyzed for an inhomogeneous, periodically comprerrsed and expanded plaSm8. 
With small pulsation amplitudes, this inatabllity is of a resonance character. 

Plasma behavior is described by means of the usual system of magnetohydro- 
dynamics equations. !l!he prlnclpal portion of the computations is carried out 
for a plasma in a strong external magnetic field (Sections 2, 4, 5). An 
example of a gravitating cylinder whose radius change8 as a result of natural 
radial oscillations is investigated in Section 6. 

1. Let us consider the motions of an ideally conductive 

nonviscous plasma described by the following system of ~~eto~~od~~cs 

equations ; 

dP d _-- z_y. 

dt 
-pdi.vv, 

-z =$+v.a 

alEf ad ==rot(yxH), ‘J2a, = 4nGop 

where v 1s the velocity, p the density, Q the gravltatlonal potential, 

and O,,= 6.67 x lo-*dyn on?/8 is the gravitational constant. The gravlta- 

tion of the medium is taken into account in (l.l), which Is important for 

configurations of interest in astrophysics. 

System (a-1) must be supplemented by the energy ‘;ransfer equation. The 

form of this equakion, however, turns out to be not significant for the prob- 

lem of stability of a plasma In a strong magnetic field. In studying the 
stability of a plasma in a magnetic field whose pressure Is comparable to 

that of the plasma, we shall make use of the equation for an adiabatic pro- 

Let us consider cylindrically symmetric motion first. We assume that the 
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plasma can rotate with auniform angular velocity. The magnetic field has 

two components. In cylindrical coordinates r, (p, z the distributions are 

21, =I 2',(1., t), I'g rll (I), U, ZP 0, u, = 0 

ii, = ?'R(!J t), H, .---: Ii (r, t) (1.3) 

We now Introduce the Lagrange variables Q,,, cpo, 80, to, 

a iE ro :LY (i&O, 'PO = (rp)*,+ . . . 

Recalling that 

x zzz (g)-l, 

from system (1,1),(l.2) we obtain (the subscript 0 of t will henceforth 

be omitted) 

a2gnoX 43tap,G, ’ 

4nr r2 s 
ap0 (a) da 

0 

w 

pp--f =I pop,,-y ot p = PO (ax i rjy (1.7) 

Formula (1.7 Is valid for adiabatic motions only. Equation (1.6) defines 
t the function f u, t) It is necessary here to specify the dlstrlbutlons 

of density ind other q&ntlt.les at the Initial instant. For a plasma cylln- 
der in a vacuum, solution (1.6) must be related to the solution of the exte- 
rior problem. The sum of the plasma and magnetic 
sion In square brackets in the right-hand side of B 

ressures, 
1.6), 

I.e. the expres- 
must be continuous. 

The pecullaxltles of the magnetic field In a vacuum are determined by those 
external sources which produce the plasma motion under consideration. In 
the case of natural oscillations of the radial pulsation type, this field 
vanishes at lnflnlty. 

Now let us suppose that a small perturbation Is Imposed on the radial 

motion we have been considering, so that the total values of the density, 

velocity, etc., are p + p*, V + V* where p = p (r, t), v = v (r, t), . . , 
are determined from Equations (1.5) to (1.7), where the asterisk denotes a 

perturbation which depends on cp and z as exp i (mcp i- /zz). Linearizing 

system (1.1) and converting from the Euler variables to the Lagrange varla- 

bles introduced above, we obtain 

(1.8) 
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(1.13) 

(i.14) 

(1.45) 

(1.16) 

Prom Equation f1.2) we have 

TXP a 
~+,-~(~~)=-.ypdivv*-~~v,~ (1.17) 

In studying the stability of a confined plasma In a vacuum, It Is neces- 
sary to make use of conditions which m&ke it poaslble to relate the solutlonB 

of tbe Interior and exterior problems. Let us derive such conditions for the 

boundary layer with its abrupt density jump. tit the density po(O> in the 

layer R -.. 6<a<R,6<K vary from some finite value to zero, and 

let the pressure PO(a) be small. We shall a8sume that the quantit,iea 

g, h, r, vr =i?r / dt, or /da and &?,/t?a are functions otr t alo= in the 
layer to within corrections of the order b/R . Thia means, in particular, 
that there are no surface currents [the region with such currents must be 
considered aa belonging to the interior). 

We multiply system (1.8) to El.17) by da/~ 

to a , where R - 6 \c a < R. A=wnW that 
R 3 

a 
u,*da - 2t, *a 

it is the case that 
R--8 

and integrate fmm R - d 

a 

(Pz” - pW)f+_s + $ ($ - rWa + x g) 5 p*da = 0 (1.18) 
R-8 

&D* a 
F-I 

4nC* a c- 
aa 21-8 51% s 

p*da = 0 (MI) 

(p~,.*)lj;_~ + $ G f.>& $ p*da) = 0 (1.20) 
R-6 

#here the integrals of v*,II*,p* and px* are small quantities, 
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R 

c H*da - fp.(j, etc. 

RLa 
The initial suppoaltlon ha regards the magnitude of the Integral of U,+ 

Is confirmed by Integrating (1.18) end (1.20). We also find from (1.19) 

that the potential O* muet be continuous ln the layer. Setting a I R In 

(1.18) to (1.20), we obtain the solutlon matching conditions sought. 

P. IRW m ot g rv tkld. Let ue conelder the basic stability equa- 

tions for a plasma ln a magnetlo fleld whose preesure la much larger than 

that of the plasnn, 10 that 

The gravitation of the medium will not be talcen into account. It Is krown 

Cl and 23 that under conditions (2.1) a@ when there Is no rotation, magneto- 

hydrody~~~lc lnstabllltles can occur only ln the region of long-wave pertur- 

bations, for which k2RB < 1, kh, - mg,, m#O (2.2) 
Henceforth we ahall aaaume that condition (2.2) Is satl.efled, although 

thla llmltatlon Is an important one ln the caoe of the problem under aon- 

elderatlon. Upon appearance of a radial motion, for example, some of th& 

harmonics w beoomc vibrationally unetable. 

We shall likewise assume that av, /at - Vy2 /R, and that the order of 
magnitude of U,(a, t) does not exceed the thermnl velocity vU,(v,- a). 

It Is clear that the rate of ahange of the perturbations desorlbed by system 

(1.8) to (1.13) Is of the same order or magnitude. Under conditions (2.1) 

and (2.2), It follows from (1.13) that div v*zO, where the term containing 
v l In the latter equation Is negligibly small. Further, making use of 

&atlone (1.12), we flnd that 

+ 1 arH,+ 
% =israts vQ 

ix, &Ii * 
* 

h’,* =; _ _r 
rn aa P-3) 

Equation div H* = 0 follows f’rom (2.3). Substituting Bxpreeslona (2.3) 
into Equations (1.11),(1.9) and (1.8), we find that 

a rp* i L$ arH,* --=--- 
at x 8aU at (2.4) 

PC* +_!&$(fq_+2Ey_ d!}+ (2.5) 

irx 
+- ( 

arH,* s_ m ar.88 
4~~9 aa _ -_--_H,* 

r aa > 

XP[$(&a*)-~g(faq)]+ (2.6) 

where how const , and correctlone of the order PR' are omltted. 
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Knowing the solutlon of system (2.4) to (2.61, we can determine H,* with 
the aid of the energy transfer equation and (1.15). This fact Is no hindrance 
In finding the solution of the next approximation, since the correction for 
H,* will appear along with the known function H,*, and the number of equa- 
tions will equal the number of unknowns. Due to the fact that the form of 
the energy transfer equation is not significant, the situation here resembles 
that of an incompressible medium. 

Let us consider the boundary condltlons for a plasma cylinder In a vacuum. 

For a > R, H* = #I* and V'l$* = 0. Hence, for small J?'Ra, 

In order to determlne ub., we must require fulfillment of the condition 

of contlnulty of the normal component of magnetic field perturbation. In the 

absence of surface currents, we arrive at the continuity condition for H,* . 
Taking into account (1.5), we find from Expressions (1.20) that 

( i:;~ rlG$ $- + j p*da -C* (2.8) 
R-6 

where C" Is Independent of t . The choice of C* Is determined by the 

relationship between the perturbations of the density and of the magnetic 

field at the initial instant. In the absence of radial compression or expan- 

sion of the plasma, for example, the perturbation components are proportional 

to exp tun! , so that C*= 0 . The case where C*# 0 corresponds to certain 

forced osclllatlons. 

getting C" - 0 , from Equations (1.18) and (2.8) we have 

The problem has thus been reduced to that of finding the solution of sys- 

tem (2.4) to (2.6) which satisfies (2.9) and the condition of boundedness at 

zero. 

3 I Radial motion ot tlla 01BDIIy. For some types of cylindrically symmet- 
ric motions, basic equatlon (1.6) for the function r(a, t) can be reduced 

to simpler form. Let us consider adiabatic motions with an arbltrary ratio 

of magnetic and plasma pressures. 

In [3 to 71 It is shown that for certain motions with the velocity v, , 

which :s a linear function of the radius, the variables in Equation (1.6) 

are separable. Using a dot to denote a derivative with respect to t , we 

set P == ai&, v,~ = aw’ (IL = W (t), w (0) = 1) (3.1) 

From Equations (1.5) and (1.7) we obtain 

P g h II- 1 -=- =_=-- 
PO bb0 

ho ,I,, = ;;i- 7 
p L pou7-2.~, p. := (p)tzzo etc: (3.2) 

Let us consider the case of a homogeneous cylinder with no surface cur- 

rents, for which 
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PO = PO09 60 = boo0 

y, LI- poo 1 -G) ) ( Ido2 = ho02 (1 -$) + I&o” -$ (3.3) 

‘Here poO , ho , etc., are constants. For the chosen pressure distribu- 

tion, (1.6) reduces to the ordinary equation 

w” = (IV02 - B$) w-3 - (2sp + Q$) w-1 + Qp2w-“Y+l (3.4) 

Integrating (3.4), we find that 

w’2 = ( wo2 - QH2) (1 - 7.~7~~) - 2 (2521~ + Q2c2) In w + 

+- rR_PII [I - w-9(y-‘)] -+ wao3, 20’0 = (w’)l=o (3.5) 

In the region w’ > 0 we have 

t = const + s - v&l (3.6) 

where f(w) Is the right-hand aide of Equation (3.5). A similar Integral 

can be written for the interval where w’ < 0. 

Let us consider the extension of the solution just found Into the exterior 

region. 

In a vacuum, 
H, = wgvRa/a, H, = hv (3.7) 

where 0, and h, are functions of t alone. The expression In square 

brackets In the right-hand side of (1.6) must be continuous at the boundary. 

Since we are only considering states where there are no surface currents, we 

will have gv = goow-2, hv = hV” w-2 (3.8) 
Such motion requires more than a certain distribution of quantities at 

the Initial Instant. Also necessary Is the fulfillment of a certain relatlon- 
ship between the forces producing compression or expansion of the plasma. 
For example, If the longitudinal current is not equal to zero at the lnitlal 
Instant, and if the charged particles are displaced as a result of changes 
In the longitudinal magnetic field, the total current along the filament must 
be maintained constant’ In order to prevent the appearance of surface currents. 
Such a state Is not being considered in the present paper. 

!l?he resulting solution makes It posslb’le to investigate various periodic 
and aperiodic motions of a plasma cylinder. Some of the solutions are lnves- 
tlgated In [3 to 73. 

Let us consider In greater detail the small oscillations near the equlllb- 

rlum position. When t - 0 and there IS no radial velocity, let all of the 

farces be in a balance, 

FV”2 - Q$ - 2QI2 - Qr.2 f RpS=O (3.9) 
We now determine the motlon associated with the presence of a small lnl- 

tlal radial velocity D, (a, 0). From (3.4) or (3.5) we have 
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w = 1 + t5 sin Qt -j- 0 (E’), L: r= we’ i 52 (3.10) 

522 =3 (W$ * !a$) - 252*2 - !a? i_ (2_( - w-v (3.11) 

where t: is a small parameter. Taking into account (3.9), we can rewrite 

Formula (3.11) as 

522 = 2 [(r - 2) (i&j* - Mr$) + (r - 1) W-V -t- QG20 (3.12) 
If rF> 0, the motion is oscillatory. Such pulsation may arriae as a 

result of the appropriate vibration of the magnetic field. In the absence 

of a magnetic field, the pulaatlons of the gravltatlng cylinder can be eX- 

cited by the build-up of the natural radial oscillations of fundamental fre- 

quency . The bulld-up mechanism will not be considered here. 

The equations describj_ng the small-amplitude pulsations can be derived 

from system (1.5) to (1.7) for arbitrary distributions of the density and 

magnetic field. Setting 

r =a [I + c(a) sin at +. . .I, I+Kl (3.13) 

we obtain 

i 

1 d&e 
lc=zo l-y~sinS?i+... , 

I 
x = p, 8, f& (3.94) 

W = Wo (1 - 2e sin Qt + . . .) (3.15) 

$(Po+ r II,2 + a2g()* 
8s )-i-g- = 0 (3.16) 

up, (4W,2 - qe = $ I( TPO + (3.17) 

-- p!&+!.$ GUPU~ j UP, (Q) da 
0 

where (3.16) is the equlfibrlum condition. For E - conxt we arrive at 

Formulas (3.4) to (3*11f. 

In the case of forced osclllatlons, the frequency R is a specified quan- 
tity ” FW natural oscillations in a constant external magnetic field, the 
frequency 0 Is determined from the condition of no variable nWDetlC field 
component outside the plasma, i.e. from the condltlon (&a& J df)omR = 0. 

For adiabatic pulsations of the plasma fn the longftudinal field, alone 
for Q,-&Qp, !A,=& W,=O, a=CO& harmonic motion according to (3.12f 
la possible only far values y > 2 . From Equation (3.17) 'we see that in 
the caee of a strong longitudinal field, even a small dePartUr?! from a linear 
relationship between the velocity U, and the radius Q alters this result 
substantially(for Q - J/p,,/ p&s the oscillatory state Is possible lf’the 
parameter e differs from a constant by a quantity of order of &rP~/h$). 

For high-frequency ulsatlons 
magnetic field (h$ > L pO) 

@>FP*~P&~9 1 n a strong longitudinal 
we have from (3.17) the well-mown t8 and 93 

Equation 

(3.189 

We note that papers [8 and 93 also deal with the stabillty of a cylinder 
in the presence of high-frequency radial pult3atiOnS. 



4. 8$aMll%y of g h@m&emour orllnsn,, Let x.18 consider the stability 

relative to long-wave perturbations m # 0 of a homogeneous plasma in a 

strong field for the case of a unlformlyd5strlbuted longitudinal current. 

We aaaume that expreaalons (3.1),(3.2) and (3.3) are valid for the velocity, 

pres8ure, etc., and that condftlona (2.1),(2.2) and $&< QP are ful- 

f llled. fn order to Investigate the stability, it Is necessary to solve 

eyatem (2.4) to (2-6) under condition (2.9). 

In the absence of radial motion, the eolutlon of (2.4) to (2.6) can be 

obtained from the general formula8 of 183. It 18 eaay to Bhow that the 8ame 

solution, but with coefficients dependent on t , aatlafles system (2.4) to 

(2.6) for a radially moving plasma. In thle manner we obtaln 

‘Ihe formula for P then becomes 

From boundary condition (2.9) we have 

For adlabatlc motions, w’* can be ellmlnated with the aid of Equation 

(3.41, whence we have 

The equation just derived permit6 us to compute the perturbation amplitude 

at any in&ant, provided Y and u’ at t - 0 are known. In the absence 

of radial motion, w-l, Y - exp twt , where III la determined from (4.3) 
or (4.4). In the region of instability, (uz< 0 * For a nonrotating fila- 
ment, the boundaries of this region coincide with those obtained in [I and 

23. It can be shown that for W-2, Q=O,k=O, Q.,=O,W#O, 
(4.4) implies the known formula for the fncrement of a trough instability of 

a rotating plasma Cl0 and 111. 
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In the case of a cylinder experiencing compression or expansion, the 

negative coefficient of Y In (4.3) or (4.4) Is likewise associated with 

an increasing perturbation amplitude. For modes IrnI > 1 , the region of 

Instability may not colnclde with that prevailing in the absence of radial 

motion. In particular, for adiabatic compression of the 

plasma can be accompanied by the development of Instability if 

(4.5) 
This lnstablllty is similar to that occurring in a heavy fluid confined 

by a light medium against the actlon of gravity [12]. The role of the gravl- 

tatlonal force Is played by the Inertial force. The lnstablllty arising 

with radial compression In the case of a thin tubular plasma shell was stu- 

died by Harris t133. 

For perturbations with sufficiently large m , Inequality (4.5) and the 
formula for the Instability rise time T can be written as 

ILvcS - il~,,~ > 8~p,,~uW+ (4.6) 
L2 

t, ’ St,= 
-c == -fE o w4 {I( !2*= ‘It -1 

- - -__ ) I- UP ! 

& 

where t, Is the time constant of the process. 

For perturbations m = f 1 , the boundaries of the lnstabllity region are 

determined by the inequality /&cc (kh,,, + g,,) < 0, which Is a familiar 

result of [I and 23. It need merely be noted that the magnitude of the ln- 

crement Increases as w(t) dlmlnlshes. 

In addition to the above instabilities, it is possible to have other types 

which vanish In passing to a cylinder of constant radius. In the case of a 

pulsating cylinder, for example, (4.3) and (4.4) are Hill-type equatlons, 

so that conditions for resonance InstabIlIty may arise. 

Let us consider stability with small pulsations when, according to Formula 

(3.101, w(t) = 1 + E sin Qt + . . ., E = con&. Neglecting quantities of 

order ca, from Equation (4.3) we flnd that 

Y" + 0s (1 - El) sill Qi!) Y = 0 (4.8) 

where [I is the angular frequency of the pulsations, given by (3.11) for 

adlabatlc motions. 

Y(t) - exp tcut for f - 0 . If, on the other hand, c#O, then It Is 

possible for Instability to arise In the region corresponding to UI'> 0 . 

For small e , the results of the general theory of equations with perlodlc 
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coefflclents 1143 Imply that the exponential rise of the function Y(t) Is 

possible In ranges of the frequency w situated In the neighborhood of 

refsonance frequencies IN., where 

Zw, = nB (n=l,2,...) (4.9) 

In order to Investigate the nth order resonance, It Is necessary to 

obtain the solution Cl43 with consideration of the terms cl . With the aid 

of Equation (4.8), we can study only the resonance n = 1 . 

Assuming that au - n + O(c) , we attempt to Find the solution of (4.8) 

In the Form [L4] 

Y ftl =I/@) cos P/&t +-8(t)] (ly’pg Q /y], 16’ < Qpj) (4.10) 

The equatlons for y and 6 are obtained From the condition that the 

expansion for Y(t) contain no terms with the difference 2u1 - i7 In the 

denominator. This yields 

Eb6Py 
y’ = - 2Qcos 28, 

We set E = y cos (6 + 1/4 n) q = y sin (0 + ‘la JC) 

Then E’=-(” -++$+ q + +- eg)E 

Hence 

E = Cleaht + C2e-Eht, A= -l&2&_+)“)‘” 
{ 

The formula for A can also be written as Follows: 

Values of UJ lying in the Interval 

1-- l/a ] Eb 1 < 20 / Q < 1 -;- l/d 1 Eb 1 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

are associated with oscillatory Instability, and the perturbation amplitude 

increases proportlonally as exp 6ht . The lnstablllty 1s occasioned by the 

resonance bulld-up of the natural oscillation whose frequency In the absence 

of radial pulsations 1s UJ . The next Section contains a generalization of 

these results to include the pulsations of an inhomogeneous plasma. 

5. 8trbtllW of & pLrrt%ng lnhomogrnaour oyllndw. Let us consider the 
stability of an lnhomogeneous plasma in a strong magnetic Field on which we 

have superimposed a variable Field of small amplitude and Frequency 

Q -I/&l p&'. 

As was shown In Section 3, the radius T = a (1 -I- E sin Qt+ . . .) , 
where E Is a constant to within corrections on the order of &po/b2. 

We shall also assume that there is no rotation and no surface currents, 

and that the density on the surface of the cylinder Is PO(R) = 0 . IF we 

confine our attention to long-wave perturbations (conditions (2.1),(2.2), 



then system (2.4) to {2.6) is valid (we assume that QC2< a~~). After 

expansion In 6 , basic equation (2.6) and condition (2.9) become 

a 
-i .-E_- [(I -+ 215 sin $8) 

8X 
TG a ,po i+a& 

-8T 1 + $$g) - 

_ :ypo $ [ (1 + 28 sin Qt) 
raX r a 
.3t 

I 
It_ z X} - 

- 2&- mg,‘s,X - m2po”eV (sin s-ii} x = 0 

C so% +$- - so (2mg, - 1 m 1 so) X} = 0 
a=R 

(5.1) 

(5.2) 

In the zeroth approximation (for t: - 0 ) , the solution can be wrltten a8 

x = 2 A, x, (a) co!?! (Opt -I- &), A, = const, gp = const (5.3) 
(P> 

Here x,(a) satisfy (5.2) and Equation (“1 

g a 
i[ 

(so” 
fix, 

- 4Jqoq12) -&- 
II i 

- f$ (So2 - 4np,w,2) + 2mgGIs* 
9 

X,=0 

MultipLyIng (5.4) by I,,(a)&? and Integrating from 0 to R , we arrive 

at the orthogonallty condition 
R 

b,” - (I$%) a pa 
I r 

CL-XpfXqf + f$ X,X,]du = 0 15-3 

0 

To find the solution with consideration of errors of order F: , we make 

use of the method of perturbation theory. We assume the quantities A, and 
‘&, in Equation (5.3) to be functions of t , and also that A’, - m,A,, 
*“P - E%%* On substitutfng series (5-3) into Equation (5.11, we have 

z 20, {f$, + EOp sin S-q A, cm fo,t Jr $p) + 
(P) 

Multlplylng thls equation by x, (a)da and lntegratlng from 0 to I? 

*) For the distribution p0 = pm (1 - aa/R2), go = go0 = con&, for example, 
Solution (5.4) can be expressed in terms of the hype?geometric function 

Substituting this solution into condition (5.21, we obtain the equation 
The value of ‘I)~’ are such that the argument of the function 

es In the lpterval between zero and unity. There are both posl- 
UP - 
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we arrive at Equation 

2wq:Yq (2A’,l sin (o,t + $I& + 3Ap*‘,l cos (m,t + I&.) -+- 

+ E (oq + Q) A, sin [(q + O)t+~q]-E(ti,l-O).~l,,sin [((L?~~--Q)~+I/J,,]}+ 

+ en~~SZ~~ill,,A, {sin [(o, + 9) t + qp] - sin[(o,-Q)t++,J)=O (5.6) 
(P) 

iv, = f po (axp+ ‘; X,]2 ) da, 

R 

Mpq = - 
\ 
’ .pOX-,S,fla 

0 ; 

With the aid of aystem (5.6) we can Investigate the problem of the reso- 

nance build-up of nonradial oscillations (corresponding to the resonance 

n = 1 of Section 4). We shall study only those osclllatlons for which 

uJp*> 0 We can eet UI,> 0 

Resonance 1s poaslble when the correction terms in Equatlog (5.6) include 

those whose frequency Is close to UJ,. For example, let 2w,- CY - O(c) , 

and let the expression ut,f wpf n be 8ome distance away from zero for terms 
with p # q Equating the coefficients of sin (uI,~ + 4,) and cos(ul,t+ II,) 

to zero, we arrive at Equations (4.11) in which y, 6,~ and b have been 

replaced by A,, 6, =Q* +(w - 1/2Q)t, 0,) and b,, , respectively. Instead 

of (4.13) we have 
4&M 

h = , b, =-Rs.-2 (5.7) 
v 

In the particular case of a homogeneous cylinder with a clearly defined 

boundary, the system of elgenfunctlons 1,((a) is incomplete, and the method 

of perturbation la, strictly speaking, Inapplicable. Nevertheless, Formula 

(5.7) with allowance for the relation ImlW,;- N, does lead to a result which 

coincides with that which follows from Formula (4.13). 

Let us investigate the resonance of the comblnatlon of two oscillations 

when oP+wrl- n = 0 (e), p # Q. From Equatlon (5.6) we obtaln 

4cl@v,A = - E~u.~C~~M~~A,, cos [qp f qq + (tip + oq - a) t] 

4co,1Yi,A,9 rl = emaQ2Mp~,Ap sin [qp + $c + (Up + oc - 9) t] 

and two slmllar equations with the subscripts p and q Interchanged. 

Taking Into account that the functions X,(a) are determined to within a 
ran 

constant factor, we set vo,h;, lo,,&, c/i, (0) /A, (0). The described 

system then reduces to the form (4.11),and 26 =$r +$, -I- (or j-0, - fi),?. 

For the solution which has a region of instablllty, the amplitudes A,, and 

A, are propoitlonal to exp eAt , where 

In the region of Instability 

It 1s Interesting to note that the solution of system (5.6) under 

conditions ulp- wo- n - O(E), and when wP Is not close to 2R will 

(cJ.8) 

(5.9) 

the 

be 
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for n Is obtained by changing the sign in 

which yields A'< 0 . 

is possible provlded the sum of the two fre- 

quencies of the nonradial oscillations (corresponding to the same m and 

k ) or twice the frequency of one of' the oscillations Is sufficiently close 

to the frequency of the radial pulsations, Here m $ 0 , and if there Is no 

longitudinal current, then k # 0 as well, The latter condltlon follows 

from the fact that all of the frequencies wP are equal to zero for k = 0, 

00' 0 . Hence we see that the location of the instability Intervals depends 

substantially on the dlstributlon of the plasma denslty and longitudinal 
current (inasmuch as w, Is given by Equation (5.4)). 

The indicated computation procedure makes possible an obvious generaliza- 
tion of the foregoing inquiry to Include the transition of more complex (e.g. 
wave-type) nanradlal motions Into various types of natural oscillations. 
Here the solution of the perturbed equation must be sought In the form of a 
solution in elgenfunctlons of all the coordinates. 

For unbounded plasmas, the problems of transition of certain waves Into 
others are examlned In [15 and 16-J. The authors of [16], for example, derive 
an Instability condition of the same type ES for the resonance of a combina- 
tion of two oscillations considered in the present Section. 

6, Cl3 the rt&biliQ oi l &a+&vit&tSng ql-•r. Consideration of the 
gravitation of the medium complicates the stability problem substantially. 
Let us confllne ourselves to an Investigation of perturbations k I 0 for a 
homogeneous cylinder in the absence of a longitudinal current. We assume 
that in the initial state of the medium experiencing compression or expansion, 
the parameter distributions are described by Formulas (3.1) to (3.4) for 
&c -- 0, 9, = 0. In astrophysics problems, the magnetic field outside the 
cylinder is usually small, so that !~JJ' Its negative, and the magnetic pres- 
sure Is comparable to the plasma pressure. In the case of a plasma confined 
by a magnetic field, the parameter $2,' is larger than zero, and Q,s< Q,s. 

In the region of homogeneous dersity, system of Equatlons (1.8) to (1.17) 
defining the stability problem has the following exact particular solution: 

(6.2) 

(6.3) 

Making use of this solution, we can investXgate certain types of pertur- 
bations from the class of those for which the wave number k = 0 . As we 
shall see, the perturbations under consideration are stable If there is no 
radial motion of the medium. Equations (6.3) imply that ~,"f: = -- QMs~?(~-11(2, 
and condition (1.20) yields Equation 

R 

X$," ’ 
I 

p* &A = I f?E 2-f-2 R! $11 ‘-1 (1 2.. C] <I % C=const 

R-S 

Noting, further, that the perturbation of the gravltatlonal potential out- 
side the cylinder is proportional to a-,W, and that this potential must be 



continuous on the perturbed surface, 
(1.19) we find that 

with the aid of boundary condition 

2 [ 111 1 p,,&cY = - QG2 w”Q 

Substitution of the resulting expreaslons Into condition (1.18) yields 
c-0, 

Now; expresalng all of the unknowns In terms of Q(t) and substltutlng 
them into Equation (6.2), we arrive at a second-order equation for Q(t) . 
If we set Q = ,L,-cr-i $ z, where q Is given by Formula (4.2), we have 

Z”+(]m~-~)(Rp~w-~~-.C1~~~‘I)Z=O (6.3) 

This equation Is a special case of (4.4), although the latter was derived 
under the condition that A,“- > Snp,. 
small amplitude, (6.4) gives 

For a plasma cylinder pulsating wlth a 

%” + o2 (1 -. cb sin Qt) 2 = 0, o? = (I m ] - 1) ( Qc2 - Wo2), EQ = If’0 
02L=2(1nI--)[(y--2)51H2+y (Q(;2-woTl (8.5) 

B? = 2 (y - 2) (QHc - W,z) -I- 2 (y - 1) Qc2 

In which equilibrium condition (3.9) Is taken Into account. An equation of 
the tjw (6.5) was analyzed ln Section 4. 

Our results concerning the stability of a gravitating cylinder can be 
applied to the qualitative examination of the stability of spherically aym- 
ycFlc gravltatlng configurations which play an lmpor;~t$ole In a8trOPhVP 

. There Is an analogy between the perturbations for a c llnder 
and arbitrary perturbations for a sphere. In particular, Equation T 6.4) for 
B I = 0 ha8 a character similar to that of Equation (15) of 1173, which deals 
w th the stability of a pulsating homogeneous sphere In relation to pertur- 1, 
batlons with monotonous dependence on the radius. 

Naklng use of this analogy, we conclude that resonance build-up of non- 
radial oscillations 1s Indeed possible In a pulsating gravitating sphere of 
nonuniform density. Resonance of the type (4.9) Is studied In [173. Let us 
now consider the resonance when .where ~1, and cu, are the frequencies of 
nonradial oscillations with the same dependence on the angular variables, 
and n Is the frequency of the radlal pulsations of the sphere. The combl- 
nation may resonate when some frequency W, 
frequency n , 

ls sufficiently close to the 
and when the difference n - u)~ la larger than zero. This Is 

because the s 
quencies 3 P 

ectrum of frequencies UI, always contains infinitesimal fre- 
we are referrl 

clfled dependence on the angu ar variables) 1183. In this example of corn l- Y 
to various nonradlal osclllatlons with a s 

g 
e- 

nation resonance, the excited oscillations have a frequency close to that of 
the pulsatlone, which may lead to beating. Beats in the luminosity curves 
of variable stars are a common occurance [18]. The described Instability 
mechanism may be the cause behind this effect. 
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