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The present paper concerns the stability of an ideally conductive cylindri-
cally symmetric plasma confined by a time-variable magnetic field. The
example of a compressible homogeneous c¢ylinder is used to consider instabi-
lity analogous to that of a heavy fluld supported agalnst gravity by a lighter
medium. The conditions under which nonradial oscillations are excited, are
analyzed for an inhomogeneous, perlodically compressed and expanded plasma.
With small pulsation amplitudes, this instability is of & resonance character.

Plasma behavior is described by means of the usual system of magnetohydro-
dynamics equations. The principal portion of the computations is carried out
for a plasma in a strong external magnetic field (Sections 2, 4, 5).
example of a gravitating cylinder whose radius changes as a result of natural
radial oscillations i1s investigated in Section 6.

1. Basio squations. let us consider the motions of an ideally conductive
nonviscous plasma described by the followlng system of magnetohydrodynamics

equations;
p%—:—i -r::~—Vp———4% H x rot H—pVO®
dp . d 0
ar = —pdivy, i =737—{~V-V (1.1)
%I—:- == rot (v x H), VIO = 4nGyp

where ¥ 1s the velocity, o the density, ¢ the gravitational potential,
and Oo= 6.67 X 107%dyn em®/g® 1s the gravitational constant. The gravita-
tion of the medium is taken into account in (1.1), which is important for
configurations of interest in astrophysics.

System {1.1) must be supplemented by the energy ransfer equation. The
form of this equation, however, turns out to be not significant for the prob-
lem of stability of a plasma in a strong magnetic fleld. In studying the
stability of a plasma in a magnetic ficld whose pre@sure 1s comparable to
that of the plasma, we shall make use of the equation for an adiabatlc pro-

cess 7:21}' {(po™) =0 {Y = const) (1.2)-

Let us consider cylindrically symmetric motion first. We assume that the
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plasma can rotate with a uniform angular velocity. The magnetic fleld has
two components. In cylindrical coordinates r, ¢, z the distributions are

Up == 0 (7‘, t), Ug ri (!), v, — 0, H,.=0
H,=rg (r, t), H, =1 (r, t) ('13)
We now introduce the Lagrange varlables Go, 9o, Zo, to,
a=ry-= (r)ta*707 (PO = ((P)i.,———(h ...

to i

r—a+ o (e t)dte, ©- 9+ \W(t)dty (j:z) (1.4)

0 0
Recalling that
0 0 i 0 0 i 7] a 0
wtra W =a w=Ya o e = o
w(t?r 1 __or
x=(5) + =35

from system (1.1),(1.2) we obtain (the subscript O of ¢ will henceforth
be omitted)

LXE =: Ao, X = ps g or h) Zg == (x)[:o, FZ‘V = ang (15)
»r alvy 3 ay?
o (P _ e T [1) (a, ) + g% (ho* + r2g02)] —

a
242 4 G

— L A%\ apy (a) da (1.6)
0

PO == poPy™¥ o p = polay/r)¥ (1.7)

Formula (1.7) is valid for adiabatic motions only. Equation (1.6) defines
the function r{a, t) . It 1s necessary here to specify the distributions
of density and other quantitles at the initial instant. For a plasma cylin-
der in a vacuum, solution (1.6) must be related to the solution of the exte-
rior problem. The sum of the plasma and magnetic pressures, 1.e. the expres-
sion in square brackets in the right-hand side of €1.6), must be continuous.
The peculiarities of the magnetic fileld in a vacuum are determined by those
external sources which produce the plasma motion under consideration. In
the case of natural oscillations of the radial pulsation type, this fileld
vanishes at infinity.

Now let us suppose that a small perturbation is imposed on the radial
motion we have been consldering, so that the total values of the density,
velocity, etc., are P 4 p*, VL V* where p =p (r,¢),Vv =v (r, 1), ...
are determined from Equations (1.5) to (1.7), where the asterisk denotes a
perturbation which depends on ¢ and z as exp i (m¢ -- kz). Linearizing
system (1.1) and converting from the Euler variables to the Lagrange varia-
bles introduced above, we obtain

o[x2 <71? v,*') —2Wor | p* (T0 — w4y o) = (1.8)

-y L (isH * * o %
T + in (tsH,* —2gH %) 14 pac O*
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4 or U 1 .
o (= ___+2Wv ) = — e (zsff,; -2, ) (1Y)
ov,* . i 4. oh \
p T = —ihpy* + - (isIL* + X 3 Hi¥) (1.10)
a . d
Farler) - v it 41
*
K 72 F P S
_1‘_8%(”;“)‘—.. —hdivv*+isv,*—*x"5;~vr* (1-13)
b D* 2
B e L
pst = p* +p<D*+;-,;—(rgH * + hH.Y) (1.15)
divvr = 2000 L I Lkt s=mg4-kk (1.16)
From Equation {1.2) we have
ap xp*t @ d . 3
TN L) — it o)

In studying the stability of a confined plasma in a vacuum, it is neces-
sary to make use of conditions which make it possible to relate the solutions
of the interior and exterlor problems. Let us derive such conditions for the
boundary layer with its abrupt density jump. Let the density po{a) in the
layer R — 6 < a <X R, 8 < R, vary from some finite value to zero, and
let the pressure pPo(a) be small. We shall assume that the quantities
g h,r, v,=0r/0t, 0r/0a end Qv,/0a are functions of ¢ alone in the
layer to within corrections of the order B/ﬂ . This means, in particular,
that there are no surface currents (the region with such currents must be
considered as belonging to the interior).

We multiply system (1.8) to (1.17) by da/y and integrate from A — 8
to o , where R — 8§ < a <{ R. Assuming that

R
S v}_*da-—-«vr*b
1t is the case that R=% a
(ps* — pD*fks + - (G — W +u5y) { pda=0  (1.48)
R-8
o !mG ¢
(aa)ﬁ_ —nle S - (1.19)
R-3
(0o )y + e ( S p*da) (1.20)

where the integrals of Vv* H* p* and p % are small quantitiles,
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R
g H*da ~ H*.§, etc.
R-%

The initial supposition as regards the magnitude of the integral of v, *
1s confirmed by integrating (1.18) and (1.20). We also find from (1.19)
that the potential &% must be continuous in the layer. Setting a = 7 1in
(1.18) to (1.20), we obtain the solution matching conditions sought,

2. The oase of s strong field. Let us consider the basic stability equa-
tions for a plasma in a magnetic field whose pressure is much larger than
that of the plasma, so that

h > 8ap,, a (dh? /da) ~ 8np, (2.1)
The gravitation of the medium will not be taken into account. It 1s known

{1 and 2] that under conditions (2.1) and when there is no rotation, magneto-
hydrodynamic instabilities can occur only in the regilon of long-wave pertur-

bations, for which BR? < 1, khy ~ mg,, m=40 (2.2)

Henceforth we shall assume that condition (2.2) ls satisfied, although
this limitation is an important one in the case of the problem under con-
sideration. Upon appearance of a radial motion, for example, some of thé
harmonics may become vibrationally unstable.

We shall likewise assume that dv, / 9t ~ »,2 [ R, and that the order of
magnitude of ,(a, t) does not exceed the thermal velocity v, (v, ~ Jpo/po).
It is clear that the rate of change of the perturbations described by system
(1.8) to (1.13) is of the same order of magnitude. Under conditions (2.1)
and (2.2), it follows from (1.13) that div v*=(, where the term containing
v,* 1n the latter equation is negligibly small. FPurther, making use of
Equations (1.12), we find that

i orH,* d /1 arH* iy orH.*
0= Tt v = e an), Het= b TEn (23)

Equation div H* =0 follows from (2.3). Substituting Expressions (2.3)

into Equations (1.11),(1.9) and (1.8), we find that

=t (2.4)

pet = B2 [ (TR - E T (2.5)
+ g (s 2 — 2 5% h,)

1047 (i a-) — 3o (5 )|+ (2.6)
+ 0% (G — W)+ x BT — L (st,e — 22T g

where nya const , and corrections of the order ¥R are omitted.
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Knowlng the solution of system (2.4) to (2.6), we can determine H#* with
the aid of the energy transfer equation and (1.15). This fact 1s no hindrance
in findlng the solution of the next approximation, since the correction for
H* will appear along with the known function K4 *, and the number of equa-
tlons will equal the number of unknowns. Due to the fact that the form of
the energy transfer equation is not significant, the situation here resembles
that of an incompressible medium.

Let us consider the boundary conditions for a plasma cylinder in a vacuum.

For ¢ > R, H* =VW* and qu)* = 0. Hence, for small wRe,
ine

H* == - H ¥ 1By (8) r=mi-t, I =cxpi{me- hz)

fm | .
Ho* 13 T . . N (2.7)
o He*, pt 0, o*=0, DBy=2Dy(t)
In order to determine A, , we must require fulfillment of the condition
of contlnuity of the normal component of magnetlc field perturbation. In the
absence of surface currents, we arrive at the continuity condition for #¥ .
Taking into account (1.5), we find from Expressions (1.20) that
a
+ | pra (2.8)
R—3%
where O* i1s independent of t . The cholce of ¢* 1s determined by the
relationship between the perturbations of the density and of the magnetic
fileld at the initial instant. In the absence of radlal compression or expan-
sion of the plasma, for example, the perturbation components are proportional
to exp twt , so that ¢*= O . The case where 0'# O corresponds to certain
forced oscillations.

Jla
<.P0' r]{,,* ‘I
¥y /IR—8

Setting (% = 0, from Equations (1.18) and (2.8) we have
fP,O,(ﬁ’_‘ e % ( L *\JL — 0 2.9
{.&'0 \ 9t riy /[{' APET dnim " la=r—% (2.9)
The problem has thus been reduced to that of finding the solution of sys-
tem (2.4) to (2.6) which satisfies (2.9) and the condition of boundedness at
zero.

3, Radial motion of the plasma, For some types of cylindrically symmet~
ric motions, basic equation (1.6) for the function r(e¢, t) can be reduced
to simpler form. Let us consider adiabatic motions with an arbitrary ratio
of magnetic and plasma pressures.

In [3 to 7] 1t is shown that for certain motions with the velocity v, ,
which is a linear function of the radius, the variables 1in Equation (1.6)
are separable. Using a dot to denote a derivative with respect to ¢ , we

set r=aw, v,=aw (w = w(t), w(0) == 1) (3.1)
From Equations (1.5) and (1.7) we obtain

P g h " 1 o .

T = T, = wr P=Pw, po= (Pl etels (3.2)

Let us consider the case of a homogeneous cylinder with no surface cur-
rents, for which
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Po = Pgor 8o = 800
2 aﬂ

Py = Doo (1 ——%n;) ) lg® = hoy® (1 —‘%":) + l? " (3.3)

‘Here poo , hoo » etc., are constants, For the chosen pressure distribu-
tion, (1.6) reduces to the ordinary equation

w = ("We2 — Qp*) wd — (2Q,* 4 Qg% wt 4 Qplw-2r+ (3.4)
2 _ v’ — b 2 & 2p,
QHZ = W . QI = 4;:?000 , 962 = ZHGOPOO: sz = pm[g‘;
Integrating (3.4), we find that
w? = (W — Qg?) (1 —w?) — 2292 + Q) Inw +
Q2
+ = e p W W = (W) (3.5)
In the region w > 0 we have
dw
t = const + S__—- 3.
Viw (3.6)

where J(w) is the right-hand side of Equation (3.5). A similar integral
can be written for the interval where w < 0.

Let us consider the extension of the solution just found into the exterior
region.

In a vacuum,

Hq, = wgVRz/a, Hz = hv (37)
where ¢, and h, are functions of ¢ alone. The expression in square
brackets in the right-hand side of (1.6) must be continuous at the boundary.
Since we are only considering states where there are no surface currents, we
will have gv = G 2, hv = hy, w® (3.8)

Such motlon requires more than a certain distribution of quantitiles at
the initial instant. Also necessary 1s the fulfillment of a certaln relation-
ship between the forces producing compression or expansion of the plasma.
For example, if the longitudinal current 1s not equal to zero at the initial
instant, and if the charged particles are displaced as a result of changes
in the longitudinal magnetic field, the total current along the filament must
be maintained constant in order to prevent the appearance of surface currents.
Such a state 1s not beilng considered in the present paper.

The resulting solution makes 1t possibie to investigate various periodic
and aperiodic motions of a plasma cylinder. Some of the solutlons are inves-
tigated in [3 to 7].

Let us consider in greater detall the small oscillations near the equilib-
rium position. When t = O and there is no radial velocity, let all of the
forces be in a balance,

W2 — Qp? — 2Q7* — Qg* + Q=0 (3.9)

We now determine the motion assocliated with the presence of a small ini-
tial radial velocity vu,{a, 0). From (3.4) or (3.5) we have
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w =1 +¢sin Qt 4 O (e¥), g =wy [ Q (3.10)
Q2 =3 (W2 — Qy® —~ 202 — Q% 4+ (2r — 1)Qp* (3.11)

where ¢ 18 a small parameter. Taking into account (3.9), we can rewrite
Formula (3.11) as ,
Q =2y —2) (W — W) +{r —1) 2927 + Q)] (3.12)
If (> 0 , the motion is osclllatory. Such pulsation may arise as a

result of the appropriate vibration of the magnetic field., 1In the absence
of a magnetic fleld, the pulastions of the gravitating cylinder can be ex-=
cited by the build-up of the natural radial oscillations of fundamental fre-
quency. The build-up mechanism will not be considered here,

The equations describing the small-amplitude pulsations can be derived
from system (1.5) to (1.7) for arbitrary distributions of the density and
magnetic field. Setting

r=all 4+¢€(a)sin Q 4...], le| <<€ 1 (3.13)
we obtain
x=x0[1—%— dote sith—g-...}, s=p g h  (3.14)
W=W,1—2esinQt+...) (3.15)
d % 2 2 2 1 6
2 (py+28 T ) 4 S apW P+ 3—4:;00903@0 (a) da = 0 (3.16)
0
d hﬁ 2o 2 i dﬁ
apy (AW, — Qe = - {(vpo + 2T TEE) LR (3.17)

[
a®  dg,? 8n
T e+ % Gome Y ap, () da
11
where {3.16) is the equilibrium condition. PFor ¢ = const we arrive at

Formulas {3.3) to (3.11).

In the case of forced oscillations, the frequency 0N 1s a specified quan-
tity. For natural oscillations in a constant external magnetic fleld, the
frequency 0 1s determined from the condition of no variable magnetic fileld
component outside the plasma, i.e. from the condition (da% /d“)amn = Q.

For a%abatic pulsations of the plasme in the longitudinal fileld, alone
for ;<€ Qp, Q; =0, Wy =0, ¢ = const harmonic motion according to (3.12)
is possible only for values y > 2 . From Equation {3.17) we see that in
the case of a strong longitudinal field, even a small departure from a linear
relationship between the velocity v, and the radius & alters this result
substantially(for Q ~ V p,/ p,A? the osclllatory state 1s possible if' the
parameter ¢ differs from a constant by a quantity of order of 8nPe/hd’).

For high-frequency pulsations (Q>V Po! PoR?) 1in a strong longitudinal
magnetic field (h? > 8np,) we have from (3.17) the well-known [8 and 9]

Equation L 4 | da? Q2
a°g (%0,
o da (T”“da') g =0 (3.18)
We note that papers [8 and 9] also deal with the stability of a cylinder
in the presence of high-frequency radial pulsations.

—
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k., BStadility of a homogensous oylinder. Let us consider the stadility
relative to long-wave perturbations = ¥ O of a homogeneous plasms in a
strong field for the case of a uniformly distributed longitudinal current.
We assume that expressions (3.1),(3.2) and (3.3) are valid for the velocity,
pressure, etc., and that conditions (2.1),(2.2) and ;<< Qp are ful-
filled, In order to investigate the stability, it 1is necessary to solve
system (2.4) to {2.6) under condition (2.9).

In the absence of radial moticn, the solution of (2.4} to {2.6) can be
obtained from the general formulas of [8]. It is easy to show that the same
solution, but with coefficients dependent on ¢ , satisfies system (2.4) to
(2.6) for a radlally moving plasma. In this manner we obtain

rH®* = Klaiml, py* — iPlam, p* =0, K=K(:), P=P{t) (41)
£

Il =expi [/’cz0 -+ m@q + mW, Sw’2 t) dt}
0

“ 2i . 2w

P= i K St — I m ) WK 2 K —
B Q Q, —2|m|Q
— (m®— 2| m|) WK - s (1 mws]u 1) K}
s 1
Qs = ——]7'[’:'?_—00, Qr :m s 840 = MEoo + Ahgo
We set { X t
K=ge¥,  g——Lm—inpwl{s gy
0

The formula for P then becomes

mw?

_ peget . Wy Q,(mQ, — 2| mi)
qulmlsoow [Y - Y + A Y 4 Y
Prom boundary condition (2.9) we have
" ' W.e 2Q, (mQ, — | m | Q)
v {(m— (% — 2 4 ey —0 43
For adlabatic motions, w”" can be eliminated with the aid of Equation
(3.4), whence we have

2 2 3 —
Yt {(tm:mi)( A )+ 2 o
w w % nuw?
The equation Just derived permits us to compute the perturbation amplitude
at any instant, provided Y and Y at ¢ = O are known. In the absence
of radial motion, w =1, Y = exp twt , where w 1s determined from (4.3)
or (4.4). In the region of instability, w?< O . For a nonrotating fila-
ment, the boundaries of this region coincide with those obtained in [1 and
2]. It can be shown that for w =1, Q; =0, %k =0, Q, =0, W0,
(4.4) implies the known formula for the increment of a trough instability of
a rotating plasma [10 and 11].

Q
[ 1) }Ym0(4.4)
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In the case of a cylinder experilencing compression or expansion, the
negative coefficient of Y in (4.3) or (4.4%) is likewlse associated with
an increasing perturbation amplitude. For modes |m]| > 1 , the reglon of
instability may not coincide with that prevalling in the absence of radial
motion. In particular, for ; =0, W ==U adlabatic compression of the
plasma can be accompanied by the development of instability if

Qg 2

w! - l et ‘-*4 w* (i 1'*v)(

(4.5)

This instability is similar to that occurring in a heavy fluid confined
by a light medium against the action of gravity [12]. The role of the gravi-
tational force 1s played by the inertial force. The instability arising
with radial compression in the case of a thin tubular plasma shell was stu-
died by Harris [13].

For perturbations with sufficiently large m , inequality (4.5) and the
formula for the instability rise time 1T can be written as

hv® — hoo* 2> 8rpoqut=) (4.6)

te 2 2\ 1, -1

where t, is the time constant of the process.

For perturbations m =+ 1 , the boundaries of the instabllity reglon are

determined by the inequality khy, (Khy, + ggo) < 0, which is a familiar
result of [1 and 2]. It need merely be noted that the magnitude of the in-

crement increases as w(t) diminishes,

In addition to the above instabllities, it is possible toc have other types
which vanish in passing to a c¢ylinder of constant radius, In the case of a
pulsating cylinder, for example, (4.3) and (4.4) are Hill-type equations,
so that conditions for resonance instability may arise.

Let us consider stability with small pulsatlons when, according to Formula

(3.10), w(t) =1 4 esin Q 4+ ..., & = const. Neglecting quantities of
order ¢2, from Equation (4.3) we find that

YY"+ (1 —ebsin Q)Y =0 (4.8)
0 2 Qy (mQy — |1 | Q) — (| m | — 1) W

0*h = Qs (mQy — | m | Q) + (| m | — 1) (Q2— 4W,?)

m
where 0 1s the angular frequency of the pulsations, given by (3.11) for
adiabatlc motions,

7(t) = exp twt for ¢ = 0 . If, on the other hand, ¢ # 0O , then it is

possible for instability to arise in the reglon corresponding to w®> 0 .
For small e , the results of the general theory of equations with periodic
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coefficients [14] imply that the exponential rise of the function Y(t) 1s
possible in ranges of the frequency w situated in the neighborhood of
resonance frequencies w,, where
20, = nQ (n=1,2,...) (4.9)
In order to investigate the nth order rescnance, it is necessary to
obtain the solution [14] with consideration of the terms ¢® . With the aild
of Equation (4.8), we can study only the resonance n = 1 ,

Assuming that 2w = Q + 0(¢) , we attempt to f£ind the solution of (4.8)
in the form [14%]

Y1) =y (t) cos [y +0@)] (|| Q iyl | < Q) (410

The equations for y and U are obtained from the condition that the
expansion for Y(t) contain no terms with the difference 2w — Q in the
denominator. This ylelds

Yy =— t-:b;)py cos 2%, Y =0 — 2 + 55 ebm sin 20 (4.11)
We set £ = ycos (B4 1,m) n=ysin(d+ Y, n)
Then . Q ebw? Q ebw?

E= (o =5+ ) n=(o—5 — 5 )¢

Hence

E=Cett 4 Ceent, A= {5 — Lo -2V a1y

82
The formula for A can alsc be written as follows:

A= {5 — (o =) (4.13)

Values of w 1lying in the interval
1 — 1, leb| <20/ Q<1 -1, |eb] (4.14)
are assoclated with oscilllatory instability, and the perturbatlon amplitude
increases proportlonally as exp eAt . The instability i1s occasioned by the
resonance bulld-up of the natural oscillation whose frequency in the absence

of radial pulsations is w . The next Section contains a generalization of
these results to include the pulsations of an inhomogeneous plasma.

5. 8tadbility of a pulsating inhomogeneous oylinder. Let us consider the
8tability of an inhomogeneous plasma in a strong magnetic fileld on which we
have superimposed a variable field of small amplitude and fregquency
Q ~V ol polt.

As was shown in Section 3, the radius r == g (1 --&sin Q4 ...),
where ¢ 1s a constant to within corrections on the order of 8npo/hoa.

We shall also assume that there 1s no rotation and no surface currents,
and that the density on the surface of the cylinder is po(R) = 0 . If we
confine our attentilon to long-wave perturbations (conditions (2.1),(2.2),
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then system (2.4) to {2.6) 1s valid (we assume that Qg% << Qp?). After
expansion in ¢ , basic equation (2.6) and condition (2.9) become

7} o2 . 2.4 52 0X ) -
'5&—(1 {po Badi [(1 - 2¢ sin Qt) ﬁb—t—] + —4_0:? “B—a—J _— (:)1)
.m2 9 . rox 542
- L:' '{90 "ﬁ[(i + 2¢ sin Qt) *57] -+ % X} —_

— g mgy's,X — mp,'eQ? (sin Q) X = 0

X

{302a 5 — 5o (2mgo — | m | 50) X}a:R =0 (5.2)
. R d

X = _-:0 rH *emitmarid, oy = B0 g const

In the zeroth approximation (for ¢ = 0 ) , the solution can be written as

X = D A4, X, (a) cos (0pt + Pp), Ap = comst, P, = const  (5.3)
(»)

Here 1, {a) satisry (5.2} and Equation (%) IS 4)
d X 2 ,
7 {a [(so2 — 4npowy?) da” }} — [’—na— (502 — 4mpowy?) + 2mg, so] X,=0

Multiplying (5.4) by x,(a)da and Integrating from O to » , we arrive

at the orthogonality condition
R

3 2
(@ — ;) | po X,/ X, + %prq] da = 0 (5.5)
0
To find the solution with consideration of errors of order ¢ , we make
use of the method of perturbation theory. We assume the quantities Ap and
Yy in Equation (5.3) to be functions of ¢ , and also that A, ~— ewpdy,
Yy ~ e0pYPp.  On substituting serles (5.3) into Equation (5.1), we have

2120, {{(Y'p + 20y sin QF) A, cos (@pt + Pp) 4
()

+ (A'p - eQA4, cos Qt) sin (0t + Pg)} [_;% (apoXy') — m2pg Xp-} +

a
-} emQ%," (sin Qf) 2 ApX,, cos (opt + Pp) = 0
¢}
Multliplying this equation by X, {(a)da and integrating from O to &

*)} For the distribution pg; = peo (1 — a¥R%), go == gop == const, for example,
solution (5.4) can be expressed in terms of the hypergeometric funetion

(LY o )
— R(hmpow?, — s°0)

PR A =V gy,

im
Xp(a):a' - 1 I

Substituting this solution into condition (5.2), we obtain the equation
for w,?. The value of w,° are such that the argument of the function
(F)a:R lies in the interval between zero and unity. There are both posi-
tive and negative w,?.
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we arrive at Equation
204V, {247 sin (04t + Pg) + 240, cos (0t -+ Pg) --
+ & (g -+ Q) 4gsin [(0g 4 Q) + Po] — & (0, — Q) A, sin [(0, — Q) + ¢, ]} +

+ em?Q2 D) Mpgd, (sin [(0p + Q) t + $p] — sin [(0p— Q) + P,]} = 0 (5.6)
(p)

R R
. P . A

]\Tq = 3 Oo (an'z+ ’Lla._ Xq2)da" ﬂf[pq —_= — x .pO'A.p‘,\'q(]a
0 H

With the ald of system (5.6) we can investigate the problem of the reso-
nance build-up of nonradial oscillations (corresponding to the resonance
n =1 of Section 4). We shall study only those oscillations for which
w, %> 0 We can set w,> O

Resonance is possible when the correction terms in Equation (5.6) include
those whose frequency 1s close to w . For example, let 2w,—Q = O(c) ,
and let the expression w.,: w,2 N Dbe some distance away from zero for terms
with p # ¢ . Equating the coefficlents of sin (w,t + ¥, ) and cos{w,t+v,)
to zero, we arrive at Equations (%.11) in which Y, J,® and 2 have been
replaced by A,, ¥ =Y, (0 — /3Q)¢, ®, and b, , respectively. Instead
of (4.13) we have

A= {ﬁ_’; e _ﬂ)z}"’, by ="My (50)
64 €2 2 N,

In the particular case of & homogeneous cylinder with a clearly defined
boundary, the system of eigenfunctions [, (6) is incomplete, and the method
of perturbation is, strictly speaking, inapplicable. Nevertheless, Formula
(5.7) with allowance for the relation |m|N,,= N, does lead to a result which
coincides with that which follows from Formula (%.13).

Let us investigate the resonance of the combination of two oscillations
when p-+w;— Q= O (8), p == g. From Equation (5.6) we obtain

boNoA = — em?Q:M Ay c0s [Pp + Vg + (0p + ©0g — Q) £]
bogNgAgp (= em@Q2M Ay sin [Y, - By + (0p + 0 — Q) t]
and two similar equations with the subscripts p and ¢ interchanged.
Taking into account that the functions [, (a) are determined to within a
constant factor, we set } @, N,/ Nq=A;(0)/Ap (0). The descrived
system then reduces to the form (4.11),and 20 =P, +V, -+ (a)p + o, — Q)t.
For the solution which has a region of instability, the amplitudes 4, and
A, are proportional to exp eAt , where

b 202 s 2m2QM -
A = {_efl_w — o, + oy — Q)2} by = —eeBi (5.8)

54 4et (
In the region of instability
'_lldglebpq|<mp+ m,i—Q<1/4Q{abw'! (3'9)

It 1s interesting to note that the solution of system (5.6) under the
conditions w,— w,— 0 = 0{¢), and when w, is not close to 20 will be
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always stable, The expression for A 1s obtained by changing the sign in
front of w, in Formula {5.8), which yilelds p%< O .

Thus, first-order resonance is possible provided the sum of the two fre-
quencles of the nonradial oscillations (corresponding to the same m and
k ) or twilce the frequency of one of the oscillations is sufficiently close
to the frequency of the radial pulsations. Here m £ 0 , and i1f there is no
longitudinal current, then & # 0 as well. The latter condition follows
from the fact that all of the frequencies «, are equal to zero for % = 0,
0oz O . Hence we see that the locatlion of the instability intervals depends
substantially on the distribution of the plasma density and longitudinal
current (inasmuch as w, 1s given by Equation (5.4)).

The indicated computation procedure makes possible an obvious generaliza-
tion of the foregoing inquiry to include the transition of more complex (e.g.
wave-type) nonradlal motions into various types of natural oscillations.
Here the solution of the perturbed equation must be sought in the form of a
solution in eigenfunctions of all the coordinates.

For unbounded plasmas, the problems of transition of certailn waves into
others are examined in [15 and 16]. The authors of [16], for example, derive
an instabillty condition of the same type as for the resonance of a combina-
tion of two oscillatlons considered in the present Section.

6., On the stadility of & gravitating oylinder. Consideration of the
gravitation of the medium complicates the stability problem substantially.
Let us confine ourselves to an investigation of perturbations % = O for a
homogeneous cylinder in the absence of a longitudinal current. We assume
that in the 1nitial state of the medium experiencing compression or expansion,
the parameter distributlons are described by Formulas (3.1) to (3.4) for
g0 = 0, Q¢ =10, In astrophysics problems, the magnetic field outside the
cylinder is usually small, so that £} ® 1s negative, and the magnetic pres-
sure is comparable to the plasma pressure. In the case of a plasma confined
by & magnetic field, the parameter Qp° 1s larger than zero, and Q<L Qpt

In the region of homogeneous density, system of Equations (1.8) to (1.17)
defining the stabllity problem has the following exact particular solution:

p* py* rv.* imre * O* hoH ¥ e 6.1)
TR TV T T v T v T g e ©.
i
l==exp [m [ o + W\,S 9Vl 00, P=P() ete.
\ ) wt (i) /]
1
Poo_ [ ilm—20mi) L .
R W = Qe (F i) (6.2)
W - 20w’ F A iV F 4 0 Qp® WY = ©.3)
WG 2yew'Q -+ imiV Q- 0, Q PR == 0
Making use of this solutlon, we can investigate certain types of pertur-
bations from the class of those for which the wave number % = 0 . As we
shall see, the perturbations under consideration are stable if there is no
radial motlon of the medium. Equations (6.3) imply that ggpﬁf’zzﬁw QﬂﬁmﬂYA)Q,

and condition (1.20) yields Equation

R
20,2 5 p¥da =112 IRIM =1 . Cl, € =const
R-—-38

Noting, further, that the perturbation of the gravitational potential out-
side the cylinder 1s proportlonal to g~ and that thls potential must be
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continuous on the perturbed surface, with the ald of boundary condition
(1.19) we find that
2| m] p“OQP"’\If = — QG2 w?¥Q

Substitution of the resulting expressions into condition (1.18) yields
C =0,

Now, expressing all of the unknowns in terms of ¢@(¢) and substituting
them intc Equation (6.2), we arrive at a second-order equation for ¢g(t) .
If we set (), 2v71 0 7 where ¢ 1s given by Formula (4.2), we have

Z 4 (Im| — 1) (Qptw™ —Qptw ™) Z=0 (6.%)

This equation 1s a speclal case of (4.4), although the latter was derived
under the condition that #2>> 8np, For a plasma cylinder pulsating with a
small amplitude, (6.4) gives

Z' 4+ @l —ebsin Q) Z =0, 0*=(m] —1)(Qs* — WA, eQ =uwo
0 =2(m|—1)y—2) Q2+ v (32—~ W] (6.5)
Q=2(y—2)(Q2 — W -+ 2(y — 1) Q5

in which equilibrium condition (3.9) 1s taken into account. An equation of
the type (6.5) was analyzed in Section 4

Our results concerning the stability of a gravitating cylinder can be
applied to the qualitative examination of the stability of spherically sym-
metric gravitating configurations which play an important role in astrophys-
ics. There is an analogy between the perturbations % = 0 for a cylinder
and arbitrary perturbations for a sphere. In particular, Equation (6.4) for
Q; = 0 nas a character simllar to that of Equation (15) of [17), which deals
wfth the stabllity of a pulsating homogeneous sphere in relation to pertur-
bations with monotonous dependence on the radius.

Making use of this analogy, we conclude that resonance build-up of non-
radlal oscillations is indeed possible in a pulsating gravitating sphere of
nonuniform density. Resonance of the type (4.9) 1is studied in [17]. Llet us
now consider the resonance when .where w, and w, are the frequencies of
nonradial oacillations with the same dependence on the angular variables,
and Q@ 1s the frequency of the radlal pulsations of the sphere. The combi-
nation may resonate when some frequency w, is sufficiently close to the
frequency 0 , and when the difference 0 — w, 1is larger than zero. This 1is
because the spectrum of frequencies w, always contains infinitesimal fre-
quencies w, (we are referring to varicus nonradial oscillations with a spe-
cified dependence on the angular variables) [18], In this example of combi-
nation resonance, the excited oscillations have a frequency close to that of
the pulsations, which may lead to beating. Beats in the luminosity curves
of variable stars are a common occurance [18]). The describéd instability
mechanism may be the cause behind this effect,
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